
Hybrid Mono-Stereo Rendering in Virtual Reality
Laura Fink1, Nora Hensel1, Daniela Markov-Vetter2, Christoph Weber1, Oliver Staadt2, and Marc Stamminger1

1University of Erlangen-Nuremberg.* 2University of Rostock.†

Figure 1: Visualization of the camera setup and the assembly of a hybrid stereoscopic image pair using only one image to serve for
the far region (beyond 3 m) of both stereo views.

ABSTRACT

Rendering for Head Mounted Displays (HMD) causes a doubled
computational effort, since serving the human stereopsis requires
the creation of one image for the left and one for the right eye.
The difference in this image pair, called binocular disparity, is an
important cue for depth perception and the spatial arrangement of
surrounding objects. Findings in the context of the human visual
system (HVS) have shown that especially in the near range of an
observer, binocular disparities have a high significance. But as with
rising distance the disparity converges to a simple geometric shift,
also the importance as depth cue exponentially declines.

In this paper, we exploit this knowledge about the human per-
ception by rendering objects fully stereoscopic only up to a chosen
distance and monoscopic, from there on. By doing so, we obtain
three distinct images which are synthesized to a new hybrid stereo-
scopic image pair, which reasonably approximates a conventionally
rendered stereoscopic image pair. The method has the potential to
reduce the amount of rendered primitives easily to nearly 50 % and
thus, significantly lower frame times. Besides of a detailed analy-
sis of the introduced formal error and how to deal with occurring
artifacts, we evaluated the perceived quality of the VR experience
during a comprehensive user study with nearly 50 participants. The
results show that the perceived difference in quality between the
shown image pairs was generally small. An in-depth analysis is
given on how the participants reached their decisions and how they
subjectively rated their VR experience.

Keywords: Virtual Reality, Stereoscopic Rendering, Depth Percep-
tion

Index Terms: Virtual Reality—Stereoscopic Rendering—Hybrid
Rendering—Depth Perception;

*E-mail: laura.fink@fau.de, nora.hensel@fau.de,
christoph.weber@fau.de, marc.stamminger@fau.de

†E-mail: daniela.markov-vetter@uni-rostock.de, oliver.staadt@uni-
rostock.de

1 INTRODUCTION

Rendering for Virtual Reality (VR) requires the synthesis of an
image pair at a high framerate. Depending on scene complexity,
this can be challenging not only for low-budget gadgets, but also
for modern high-end hardware. The similarity of the stereoscopic
image pair has led to a number of acceleration approaches to reduce
the computational costs that comes along with rendering nearly the
same objects twice from only slightly different perspectives. It can
easily be shown that the difference between the stereoscopic images
decreases quickly with distance. Consequently, the importance
of binocular disparities for depth perception drops quickly in the
distance. Literature reports that human stereoscopic vision only
delivers significant depth cues up to ten meters, but these numbers
vary [2, 20].

A simple acceleration approach is thus to render distant objects
once, and to render only close objects separately for both eyes on
top. This idea can be directly applied to flight simulator scenar-
ios [5], where the outside world is nearly identical for left and right
eye and thus rendered only once, whereas the cockpit is rendered
stereoscopically on top. However, in general setups it is more diffi-
cult to distinguish between close and distant objects and to achieve
consistent renderings without transition artifacts.

In this paper, we examine an approach that uses a pre-defined dis-
tance m to switch between monoscopic and stereoscopic rendering.
We call the plane with z = m the mono plane, everything in front of
or behind this plane is the near region, or far region, respectively.
We first render the near region for left and right (up to the depth of
the mono plane z = m) as shown in Fig. 1. Next, we render the far
region using the third frustum, and use the result to fill in the remain-
ing image parts of the left and right view. If the result is properly
mapped to the left and right image, the images are continuous, and
the transition is not noticeable. Note that by first rendering the near
region(s), we can use the depth buffers of left and right image for
occlusion culling when rendering the far regions. Depending on the
choice of m, the costs for the additional rendering pass and copy
operations are compensated by the reduced workload, resulting in a
significant speedup. We will evaluate this effect in Sect. 5.

This general idea is not new, for instance it was implemented in
the Oculus SDK and described in blog posts, e.g. [22]. However,
the implementation focuses on mobile applications (GearVR) and

accepted version for IEEE VR 2019 (c) IEEE

descriptions lack detail of the implementation, e.g. how to handle
arbitrary view frusta as achieved by a precise calibration, how to
avoid artifacts along the transition plane, or how to handle anti-
aliasing properly. Furthermore, to the best of our knowledge, the
impact on human perception has not been examined yet, and how it
varies with the choice of the mono plane.

In this paper, we examine this approach in detail:

• We provide technical details of a practical implementation of
this idea, including the usage of asymmetric calibrated view
frusta, as well as details on culling and anti-aliasing, that go
beyond available implementations.

• We present results from a user study with almost 50 partici-
pants to evaluate the visual impact of the approach, and the
influence of the choice of the mono plane on perception.

2 RELATED WORK

From a hardware point of view, multiview [3, 8] is one answer to
compensate for the higher computational costs to render stereoscop-
ically. Other terms which mean the same or very similar techniques
to multiview are e.g. instanced stereo [8] or single pass stereo [21].
Multiview approaches mainly work by conflating multiple drawcalls
which only differ in view or perspective. Unnecessary communica-
tion between GPU and CPU is avoided. Thus, performance gains
are mostly expected on CPU side. In mobile context, some hardware
drivers also slightly cut down computations during the geometry
processing. But, as the instancing of drawcalls does not reduce the
workload itself, the time spend for fragment processing and the fill
rate remain nearly unchanged to conventional stereo rendering [3].
A more detailed explanation and analysis of multiview alike ap-
proaches can be seen in a post at the Unity Blog by Srinivasiah [24].

Tackling the effective workload, several perception based accel-
eration methods have arisen especially in VR context [28]. The
general idea is to specifically make the most computational effort
where it really is perceived. One of these findings is the diminishing
importance of binocular disparities with distance as depth cue which
was published by Cutting and Vishton [2] or McCann et al. [20].
The finding suggests the idea of only one rendering partly serving
as image for both eyes as sufficient.

In 2017, an implementation of the idea to render the far region
only once for both eyes, was officially released [9] for mobile appli-
cations in the Unreal Engine and is referred to as Mono Far Field
Rendering [7]. The feature coincides with an early prototype from
2014 by Tom Heath [13] which was shipped with as code sample
with an outdated version of the Oculus SDK. CThe basic concept
of this implementation is described for GearVR and OculusGo in
the Oculus developer documentation [22] and was besides of that
presented for mobile developers at the GDC 2017 by D. Di Donato,
R. Palandri and R. Vance [3]. While these implementations and
talks describe the general idea that is also the basis for this paper,
they do not further discuss technical details that arise in a practical
implementation (e.g. how to avoid shading artifacts at the transition
plane or how to integrate anti-aliasing). Furthermore, the impact of
the approximation on human perception is not examined, and how
scene content or the choice of the transition plane influences human
perception.

Converting mono to stereo content, as done for the far region
of our renderings, is a concept which is well known in research
for 3DTVs and movie (post-)production [1, 10, 17, 23]. Essentially,
such methods work by warping pixels according to their known
or assumed depth to yield an image pair with a certain degree of
disparity. Many online/realtime approaches follow a two step algo-
rithm: at first, pixels from the input image are warped according to a
given mapping function and secondly, the occurring artifacts are han-
dled [23]. The arising artifacts are mainly holes which are caused by
disocclusions and corrected by thought-out filling algorithms [1, 10].

With HMDs, the comparably larger size of the perceived footprint
demands consistently filled pixels and temporal stability of the hole
filling results and are crucial for the perceived image quality [27].
Estimating content from the adjacencies is not trivial and results in
a trade-off between performance gain and an investment of compu-
tation time for more reasonable hole filling. As performance gain
is our main goal, we simply map pixels according to a constant
depth throughout the mono plane. Treating the depth at the plane as
constant, prevents holes from the outset but serves of course only as
crude approximation for the mapping. Non-linear warping functions
can circumvent the need of hole filling, too, but the selection of an
appropriate warping function and the higher computational costs
are rather applicable to an offline post-production use case than to
realtime applications [17].

User studies emerged as commonly accepted tool to evaulate
the impact of such approximations, as done e.g. by Schollmeyer
et al. [23] or Lang et al. [17] in recent publications. Since we
classify the alterations of the final stereoscopic image pair as similar
to the ones mentioned, we followed their methods to assess the
performance of hybrid mono-stereo rendering in terms of image
quality and their considerations to take account for the HVS.

3 HYBRID MONO-STEREO RENDERING

In the following, we assume a typical HMD stereo-setup with two
parallel image planes, and an offset IPD (interpupillary distance) of
about 6.4cm. For a hybrid renderer, we have to define a third frustum
for the scene beyond the mono plane, and how to merge the images
so that there is no visible transition. Because of findings about the
cyclopean eye serving as the perceived origin of a projection line
from the observer towards an object [6, 19] (instead of a dominant
eye), we treat both eyes as equally important, so any introduced
error should distribute symmetrically. The transition from stereo-
to monoscopic image parts should be continuous and not cause a
notable edge. As far as it is possible no objects should get lost or
added to the visual field. At last, we make no simplification of any
hardware-specified parameters, that is we want to be able to use
the arbitrary, device-specific calibrated frusta, as they are used in
high-end HMD devices.

In previous work [3, 7, 22], the setup shown in Fig. 2 (left) has
been used. Frusta are assumed to be completely symmetric and
not skewed, so for each camera the same projection matrix is uti-
lized [22]. In our setup, we decided to position the third camera C
as shown in Fig. 2 (center left) to better fulfill the above described
properties. We choose the union volume of frustum L and R behind
the mono plane as starting point to construct frustum C. It provides
the inclusion of the visible content of both eyes. At the same time, it
shares at least one aperture angle with each stereo frustum, hence a
certain similarity of perspective is implied. Ideally, the placement of
camera C would be the intersection point of all expanded planes of
the union volume, but due to asymmetries of hardware parameters
there is no intersection point guaranteed. Hence, we approximate the
camera position by the rear intersection of the left and right frustum
plane with the z-axis. Simultaneously, we demand that the third
frustum contains all intersections of the stereo frusta with the mono
plane to provide the prerequisites of a continuous transition.

Based on these triple frusta, the image formation is simple: The
far region is rendered using view frustum C, with the mono plane
z = m as image plane. The resulting monoscopic image is then
used as background for the renderings of the left and right eye
(frusta L and R), which is in the simplest case (without any frustum
asymmetries) a shifted copy operation of the monoscopic image.
Note that a real implementation requires further considerations,
e.g. to avoid artifacts at the transition due to sub-pixel translations, or
to obtain proper depth values for post-processing. We will elaborate
on these implementation issues in Sect. 4.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 10 20 30 40 50 60

er
ro

r
in

 p
ix

el
s

z

m = 3
m = 3.5
m = 5.5

m = 8
m = 17.5

m = 31

Figure 2: Left: Three camera setup for hybrid rendering of Mono Far Field Rendering [3,7,22] with mono plane m (darkgreen). Center left: Our
setup for hybrid rendering with mono plane m (darkgreen) and an overlap region (ε). Note that our setup correctly contains the entire bunny.
Center right: Projection error for our setup. A point p is first projected towards the camera C onto the mono plane m (pC), then towards the left (or
right) eye. Note that the interpupillary distance is vastly exaggerated to see the effect. Right: Maximal pixel offset over depth for different choices
of the mono plane (HTC Vive, w = 1344 px (super sampled), IPD = 0.064 m).

Error Analysis The plot in Fig. 2 (center right) shows how
our triple setup alters the projection of a point for objects beyond
the mono-plane. In our setup, projected points generally move
inwards. Due to construction, the error at the mono plane is zero
and grows with growing distance, which fits well with the fact that
stereoscopic depth perception quickly decreases with distance. The
closer the mono plane is chosen, the larger the error becomes. Fig. 2
(right) shows the maximum projection error of our setup for different
choices of m. Note that even for very close m the error is in the
range of a few pixels. For instance, in a practical setup with the
mono plane at 8 meters the maximum error is 4 pixels.

The transition of one projection matrix to another along the mono
plane leads to a continuous rendering. However, the transition plane
can result in subtle kinks of lines passing this plane. The effect
becomes visible for lines close to the viewer and parallel to the view
direction. Note that this effect is unavoidable and also appears in
previous work [3, 7, 22]. While the effect is hardly noticeable in
practice, it can be seen by experienced users. We will discuss this
feature in more detail in the context of our user study in Sect. 6.

4 IMPLEMENTATION DETAILS

In this section, we describe technical details of our implementation,
including the usage of calibrated, asymmetric view frusta, culling
optimizations, the avoidance of transition artifacts and the inclu-
sion of anti-aliasing techniques. Fig. 3 shows our pipeline, in the
following we describe the single stages.

As a result, our renderer has a significant advantage in perfor-
mance, but also achieves rendering quality that is on par with tra-
ditional stereoscopic rendering (except the inevitable kink which
is only visible during closer examination) and includes proper anti-
aliasing.

Shadow Map Frustum Culling Render L & R

Depth MapOcclusion CullingRender C

Map C

to L & R

Postprocessing:

Tonemapping, TXAA,

Bloom, Sharpen

Submit
to HMD

Figure 3: Pipeline of our implementation

4.1 View and Projection Matrices
Our camera setup as shown in Fig. 2 consists of the three cameras
Left, Right and Center. Each camera has an individual view matrix
VL,R,C and projection matrix PL,R,C. The projection values left, right,
bottom and top, as well as viewport dimensions wL,R and hL,R are
hardware-given and retrieved from the SDK [18, 25] (see Sect. 4.2
and 5 for further details). The origin of the coordinate system in
Fig. 2 corresponds to the head position of the user and the z-axis to

its view direction, which implies that the common view matrix V is
already applied.

VL,R,C differ from V by ∆VL,R,C, which are the matrix representa-
tions of the translations t:

tL =−
(1

2 d,0,0
)T

tR =
(1

2 d,0,0
)T

tC = (0,0,zC)
T ,

with zC = min
(

d
2lL

, −d
2rR

)
.

(1)

where d represents the interpupillary distance. So, tC is the rear
intersection of the left and right frustum plane with the z-axis. We
demand that the third frustum contains all intersections of the stereo
frusta with the mono plane to provide the prerequisites of a continu-
ous transition. This is enforced by using the slope of the lines which
connect the camera position and the outer intersection points. Thus,
we calculate

lC = max(g(m,rL, tLx,g(m,rR, tRx)) ,
rC = min(g(m, lL, tLx),g(m, lR, tRx)) ,
bC = min(g(m, tL,0),g(m, tR,0)) and
tC = max(g(m,bL,0),g(m,bR,0))

(2)

with g(m,a,b) = m− zC
−1(am+ zC)+b.

Further, we refer to m as the distance of the mono plane from
the mentioned origin. Additionally we introduce an overlap ε , its
purpose is described in Sect. 4.3, with

ε(m) = k|sC|m. (3)

Where k is an arbitrary constant, we set to 2. To make things explicit,
we use

nL,R = n, fL,R = m, nC = m− sC− ε, fC = f − sC (4)

as near and far for the corresponding cameras.

4.2 Mono-to-Stereo Mapping
At this point, all needed values are known to determine PL,R,C and
VL,R,C and we can derive the mapping matrices

MC→L,R = PL,RVL,RV−1
C P−1

C , ML,R→C = PCVCV−1
L,RP−1

L,R (5)

to project arbitrary points from one clip space to another. We make
use of MC→L,R to project the near plane of C’s clip space to the left
and right clip spaces by setting z =−1 as the depth of a screen space
aligned quad

Q =

{
q̂00 = (−1,−1,−1,+1)T , q̂10 = (+1,−1,−1,+1)T ,
q̂01 = (+1,+1,−1,+1)T , q̂11 = (−1,+1,−1,+1)T

}
(6)

and yield
QL,R = MC→L,RQ. (7)

Appropriate viewport dimensions wC and hC can then be calcu-
lated by

wC = 1
2 min

(
xLq10 − xLq00 , xRq10 − xRq00

)
wL,R,

hC = 1
2 min

(
yLq01 − yLq00 , yRq01 − yRq00

)
hL,R.

(8)

(Note, the dehomogenization of the vertices q prior to this calcula-
tion.) Thus, resolution should match at the transition of the frustums
of L/R and C as exact as possible. Using min ensures that pixel
footprints of C are not smaller than those of L or R. Otherwise,
more aliasing might be introduced due to undersampling during the
projection of the monoscopic content to the stereo images.

If m should be featured as an arbitrary value it might be convenient
to calculate the maximum dimensions WC and HC for the nearest
m that should be selectable, since wC and hC vary depending on
the chosen m, Using WC and HC for memory allocation of the third
texture circumvents the need of any reallocation after initialization.
Thus, the valid range of the texture coordinates uvC for the access
of image C is

[
0, wC

WC

]
×
[
0, hC

HC

]
instead of [0,1]2 .

As mentioned in Sect. 4.1, the aperture angles for the left and
right camera frustum are hardware dependent [25] and reveal a by
the manufacturer performed calibration step. For our HTC Vive e.g.,
we yield lL = −1.391937,rL = 1.247409, tL = −1.464287,bL =
1.468819 for the left eye and lR =−1.246557,rR = 1.398447, tR =
−1.472458,bR = 1.465505 for the right eye (see Sect. 5 for details).
The values are given as tan(α), where α is an aperture angle from
the z-axis to the respective frustum plane. The calibration is notable
due to the fact that the aperture angles are, even besides of the usual
skew, slightly asymmetric (compare e.g. lL to rR). The asymmetry
causes minor differences in the size of pixel footprints at the mono
plane (in spite of the adaption of viewport dimensions as described in
Eq. 8). It is thus insufficient to perform a simple, pixelwise copy of
a cropped, version of image C to realize the mapping, as this would
highly increase the possibility of discontinuities along the mono
plane. Hence,it is inevitable to allow for a subpixel-fine sampling
when mapping to L and/or R. Bilinear texture filtering solves this
problem, however at the price of slight blurring of the monoscopic
image.

Furthermore, the bilinear filtering causes the need of some adap-
tion if temporal anti-aliasing (see Sect. 4.5) is utilized. Though,
it is highly recommended to apply some form of filtering during
the reprojection. Using only nearest neighbor interpolation instead,
leads to notable “snapping” of pixels along the lines where the offset
exceeds a texel boundary.

In respect to pipeline design and further postprocessing step, we
want to mention that after the assembly of a hybrid image pair the
information of the origin of a pixel is lost (if not additionally tracked).
In consequence, also the fragment depth is unusable from this point,
except it was saved in a common range (e.g. world coordinates etc.)
or transformed into a joint frustum during an intermediate step after
rendering of the individual frusta. An alternative implementation
using identical near- and far-planes together with hardware clipping
planes for frustum division removes such restriction, but at the cost
of decreased depth resolution.

4.3 Transition Artifacts
Without the overlap ε (see Fig. 2 left) we noted the occurrence of a
cutting line along the mono plane which can be seen in Fig. 4. The
probability of this occurrence depends on the depth difference of ad-
jacent pixels at the mono plane which can be arbitrarily high. Hence,
we linked ε to m (see Appendix) due to the pixel footprint which
increases with distance and thus, a pixel can cover an even bigger
depth difference. In theory, it may still happen that a rasterization
ray exactly hits a point which neither is covered by the stereo nor
mono frusta because of the perspective discrepancies in cases of very
flat geometry, but by the linkage of m and ε it gets very unlikely.

Figure 4: Transition artifacts. Left: Cutting line. Right: Interpolation of
view vectors vL,R,C within a user defined range.

In context of shading, we have to take care of slightly different
view angles. While the transition is mostly seamless for diffusely
lit pixels, there might be a noticeable seam through specular high-
lights and reflections. We propose a linear interpolation of viewing
vectors to mitigate the artifact, see Fig. 4 right. The range where we
interpolate is defined arbitrarily (we set ≈ 0.3 m). A conversion to
quaternions was not necessary to achieve reasonable results, even
though this operation complies with an interpolation of rotations.

4.4 Culling

Culling of invisible triangles and pixels is mandatory to achieve a
speedup from hybrid stereo rendering. Efficient culling requires
sufficiently fine grained object structures, which we assume in the
following culling steps.

View Frustum Culling We use a single view frustum culling
pass to simultaneously distribute scene objects to the mono- and
stereoscopic cameras. Therefore, we cull against the union of all
three frusta and the mono plane. Objects intersecting the mono
plane need to be rendered thrice, which underlines the need of a fine
grained model structure.

Merged Depth Map As we first render the left and right view
L and R, we can perform additional culling for the far region. We
merge the resulting depth maps and use this as a basis for culling
objects and pixels when rendering the monoscopic view C. To ensure
that an object beyond the mono plane cannot be seen from the left
nor the right eye, we combine the left and right depth map to an
image-space z pyramid [11]. One pixel of layer i holds the maximum
depth value of an area of 2i×2i pixels in native resolution. We skip
to write layer 0 and 1 to reduce the fill rate and unify the depth of
left and right during the creation of layer 2.

Discarding Mono Fragments Based on our depth map, frag-
ments can simply be discarded by sampling layer 2 and check if
z < zm, where zm is the depth of the mono plane m− ε in the clip
space.

Occlusion Culling As discarding of monoscopic content only
on fragment level might be wasteful, we use the remaining layers
of the depth map to perform occlusion culling which comes at low
additional fixed costs. The culling is straight forward: bounding
boxes of the remaining objects after the frustum culling are projected
to the clip space of camera C. In case the box is fully behind m, the
size of the screen space bounding box is used to determine the depth
layer to sample from and the depth values are compared.

4.5 Anti-Aliasing

Proper anti-aliasing is mandatory, in particular for current HMDs,
where the perceived footprint of one pixel usually exceeds that of
conventional displays. In the following, we discuss the inclusion
of Multi-sample Anti-Aliasing (MSAA) or Temporal Anti-Aliasing
(TAA) into our pipeline.

MSAA [16] has the advantage of being fast and to be natively
supported by the majority of hardware. Current implementations of
MSAA require the rendering into a specialized framebuffer, which
can hold multiple color and depth samples per pixel. The special-
ized framebuffer cannot be displayed directly and has to undergo a
resolve into a conventional texture. This happens during a hardware
accelerated blit which simply averages the colors for one pixel ac-
cording to its depth samples [16]. Hence, it is rather inadequate in
combination with hybrid stereo rendering. Using the conventional
hardware resolve prior to the image assembly causes artifacts es-
pecially at the mono plane because of incomplete color and depth
information. Whereas the use of the hardware resolve after the im-
age assembly needs an expensive per sample mapping of the depth
and color information. Additional clip planes and adapting the pro-
jection matrices (all with same near and far values) are needed to
provide depth values in a common range. To circumvent the per
sample writing accesses, a custom resolve is needed, too.

TAA is an efficient method to take care of sampling artifacts
not only in spatial but also in the temporal domain. In concept,
our implementation resembles Karis’ [15] with some adaption to
be applicable to our setup. TAA equals a temporal super sampling,
where the positions of raserization rays are jittered across the pixel
area and hence, vary every frame. We apply the same jitter for
each camera, even though the pixel foot prints slightly differ due to
asymmetries of our setup. In case of movement, though, the content
covered by one pixel alters and is not temporally stable.

Common implementations of TAA, as also described by Karis,
use color box clipping after the backprojection of a pixel. The
clipping prevents an effect, known as “ghosting”, by cutting the
color history in case the new color differs too much from its
history, e.g. in case of occlusions. The image interpolation
applied during the projecting of the monoscopic contents into
the stereo images influences the resulting bounding box, though.

actual bbox

filtered bbox

0

0, 5

1

in
te
n
si
ty

0 1 2 3 4
x

The effect is visualized in the
inset image on the right. Since
the color boxes tend to be
smaller than usual (size of 0 in
the worst case), aliasing is rein-
troduced especially at edges.
One solution is to keep track
of additional information, e.g.
if a pixel in the assembled hy-
brid image pair has mono- or
stereoscopic origin or calculate a scale parameter for the box based
on the original pixel neighborhood. It would be also possible to
write out the actual min and max of the adjacent HDR colors. But
such approaches lead to extra overhead and need thought-out edge-
treatments along the mono plane due to incomplete color information
prior to the image assembly.

An alternative approach is to additionally scale the color box
according to the current screen space velocities which are available
anyway. By doing so, we significantly lowered the reintroduction of
aliasing efficiently.

Besides of that, we also have to correct the screen space velocity
of camera C vC as it is computed in its original clip space and scale
it respectively. Therefore, we calculate

vL,R = 1
2 SvC, with

S =

(
xL,Rq10 − xL,Rq00 0

0 yL,Rq01 − yL,Rq00

) (9)

similar to the already known Eq. 8. Note, that while filtering color
during the reprojection is necessary for reasonable fitting along the
transition, linear filtering should not be applied to the velocities.

5 RESULTS

Our forward renderer, as depicted in Fig. 3, writes to six 16bit
channels (RGBA & screen space velocity). During fragment pro-
cessing, there are reading accesses to the shadow texture (3×3
percentage closer filtering) and the sky texture (skybox reflec-
tions), as well as to the respective diffuse and alpha textures of
the material. We featured shadow, as it is known to be an im-
portant depth cue [4], in order to provide sufficient brightness
and contrast conditions during our user study. We made use of
DrawElementsIndirectCommand Buffers [12] to control the draw
calls of the subdivided scene mesh. The frustum culling was per-
formed on the GPU using a compute shader which only changed
one field of the draw command struct to en- or disable the draw call
for each mesh part. Hence, communication between CPU and GPU
was minimized and had hardly measurable impact on the overall
performance. Backface culling was enabled, too.

5.1 Performance
We evaluated the performance of our hybrid renderer with an
own 3D scan of a terrain scene (LANDSCAPE in the quality as-
sessment) and NVidia’s Emerald Square Scene [14] using two
different hardware setups. Setup A was made up of a NVidia
GTX 1080Ti and a HTC Vive Pro. We rendered at the recom-
mended resolution of 2352× 2612 px per eye (return values of
GetRecommendedRenderTargetSize [18]). Setup B represents
a “low budget” configuration, made up of a NVidia GTX 970
and a HTC Vive, using the recommended resolution of 1344×
1512 px [18]. The near plane distance n was set to 0.1 and
the far plane distance f to 1000. The field of view parameters
were set according to the return values of the OpenVR function
GetProjectionRaw [25].

A breakdown of the time measurements including the single
stages of our pipeline is presented in Fig. 5. We analyzed three
variants of our pipeline with successively more optimization steps
enabled. No Opt. indicates the rendering times without any depth
map based optimizations only relying on the result of the frustum
culling, Discard with discarding of fragments at the early beginning
of the pixel shader stage of the third render pass based on the merged
depth map, and Occl. Cull with additional occlusion culling. Frus-
tum culling was enabled during all configurations (for the reference
and No Opt., too). Consequently, the reference amount of primitives
rendered for each view varied.

The sampling distances of m cover those used for the user study
in order to allow a trade-off analysis between performance gain and
quality loss. Additionally, times were measured for m = f = 1000
providing a rough estimate of the minimally introduced overhead.
The views were chosen to give an representative overview of possi-
ble time savings depending on the mono plane distance m. Therefore,
the scene geometry was preferably uniformly distributed. We de-
manded not having too many occluders in the very near range to
avoid skewed results in respect to depth based optimizations, as well.
Simultaneously, all rendering times should preferably not exceed
≈ 11 ms (serving a 90 Hz framerate) to provide a realistic scenario
with the use of HMDs.

The Discard variant of our pipeline was chosen for the in-depth
analysis in Fig. 5. We identified the Discard variant as representative
because it includes any additionally introduced overhead up to the
depth map generation but is less scene dependent as the Occ. Cull.
variant (with occlusion culling were far bigger time savings possible,
though). We base this assumption on the observation that objects
connected to the ground and the ground itself will rise in the visual
field with increasing distance and thus, will make up a continually
bigger proportion of the rendering.

In respect to performance, time savings were realistic for m ≤
31 m (see e.g. both plots of Setup A and lower plot of Setup B of
Fig. 5) for any of the three variants No Opt., Discard or Occl. Cull..

Setup A Setup B

 0
 1
 2
 3
 4
 5
 6
 7

3 3.5 5.5 8 12 17
.5

23
.5

31 39
.5

49 10
00

P
ri

m
it

iv
es

 ×
10

6

Reference
L
R
C

Occl. Cull.

 0

 2

 4

 6

 8

 10

 12

 14

T
im

e
in

 m
s

Reference
Misc

 TM & TAA
Culling

L
R
C

C to R,L

 8.5
 9

 9.5
 10

 10.5
 11

 11.5
 12

 12.5

3 3.5 5.5 8 12 17.5
23.5

31 39.5
49 1000

T
im

e
in

 m
s

m

Reference
No Opt.
Discard

Occl. Cull.

 0

 0.5

 1

 1.5

 2
3 3.5 5.5 8 12 17

.5
23

.5
31 39

.5
49 10

00

P
ri

m
it

iv
es

 ×
10

6

Reference
L
R
C

Occl. Cull.

 0
 2
 4
 6
 8

 10
 12
 14
 16

T
im

e
in

 m
s

Reference
Misc

 TM & TAA
Culling

L
R
C

C to R,L

 10
 10.5

 11
 11.5

 12
 12.5

 13
 13.5

 14
 14.5

3 3.5 5.5 8 12 17.5
23.5

31 39.5
49 1000

T
im

e
in

 m
s

m

Reference
No Opt.
Discard

Occl. Cull.

 0
 1
 2
 3
 4
 5
 6
 7

3 3.5 5.5 8 12 17
.5

23
.5

31 39
.5

49 10
00

P
ri

m
it

iv
es

 ×
10

6

Reference
L
R
C

Occl. Cull.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

T
im

e
in

 m
s

Reference
Misc

 TM & TAA
Culling

L
R
C

C to R,L

 7
 7.5

 8
 8.5

 9
 9.5
 10

 10.5

3 3.5 5.5 8 12 17.5
23.5

31 39.5
49 1000

T
im

e
in

 m
s

m

Reference
No Opt.
Discard

Occl. Cull.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

3 3.5 5.5 8 12 17
.5

23
.5

31 39
.5

49 10
00

P
ri

m
it

iv
es

 ×
10

6

Reference
L
R
C

Occl. Cull.

 0

 2

 4

 6

 8

 10

 12

 14

T
im

e
in

 m
s

Reference
Misc

 TM & TAA
Culling

L
R
C

C to R,L

 9
 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

3 3.5 5.5 8 12 17.5
23.5

31 39.5
49 1000

T
im

e
in

 m
s

m

Reference
No Opt.
Discard

Occl. Cull.

Figure 5: Averaged rendering times (lower two plots) and drawn primitives (upper plot) according to the distance of the mono plane m for Setup A
(HTC Vive Pro & Nvidia GTX 1080Ti, left) and for Setup B (HTC Vive & Nvidia GTX 970, right). The views to measure the times are shown above
the plots. No Opt., Discard and Occl. Cull. are the three pipeline configuration variants with varying optimization steps. (L)eft, (R)ight and (C)enter
indicate the camera specific amount of drawn primitives and rendering times into a HDR texture. Misc is mainly made up by the submission of the
renderings to the HMD. TM is the tonemapping and TAA the temporal anti-aliasing performed in a single step. Culling includes the view frustum
culling as well as the depth map generation as described in Sec. 4.4. C to R,L stands for the mapping of mono to stereo contents.
In the upper plot, the bars indicate drawn primitives only with frustum culling, whereas Occl. Cull is the amount of drawn primitives with additional
occlusion culling. The cumulative plot in the middle disassembles the needed computation times with discarding of fragments and thus, includes
the depth map generation but without occlusion culling. Culling covers the overhead needed for the workload reduction, namely frustum culling
and the creation of the depth map (despite of the sampling of the depth map which is performed at the beginning of the fragment stage of the
render pass for C).

Beyond this distance, the overhead of the additional renderpass,
the mono-to-stereo mapping and the depth map generation usually
outweighed any time savings. Of course, with No Opt. the best
case occurs if no object is left in the stereo frusta, thus cutting down
the amount of rendered primitives by half. For both, the Discard
and the Occl. Cull., holds that the biggest performance gains can be
achieved if there is one fragment per texel rendered in the left and
the right frustum. Consequently, the merged depth map is activated,
and hence the workload for the third render pass is lowered, as
well. This behavior is reflected e.g. in the upper plots of Setup B.
For the range m < 8, the gain compared to the No Opt. variant is
close to zero or even negative. For m ≥ 8, the rendering times for
Discard and the Occl. Cull. drop further, which also correlates with
the decrease in the primitive count with applied Occl. Cull.. The
LANDSCAPE scene hardly shows differences between the variants.
This can be justified by the low depth complexity in the scene which
makes it rather unsuitable for additional depth-based optimization
approaches.

Overall, the numbers of Fig. 5 clearly show that the introduced
overhead is very small and that a large fraction of the scene primi-
tives is only rendered once even without depth based optimizations.
By applying depth based optimizations additionally, rendering times
dropped even further, especially in a range of 8≤ m≤ 31 which fits
well considering the diminishing impact of binocular disparities as
depth cue beyond 10 m.

5.2 Quality

In general, the achieved rendering quality of our system is on par
with traditional stereoscopic rendering. Also the results of a ques-
tionnaire used in our user study (see Supplemental Material) indicate
that the difference in perspective is the main difference between the
renderings.

The inevitable kink in geometry from the slight change in perspec-
tive at the mono-plane becomes visible when layering a conventional
and a hybrid rendering as done in Fig. 6. It appears along edges
which are congruent up to the mono plane and then drift apart.

Using conventional image quality assessment methods, like the
Structural Similarity Index (SSIM) [26], to compare each half of
our hybrid image pair against the corresponding half of the conven-
tional image pair individually, the measured discrepancy follows the
formal error as expected. As depicted in Fig. 6, the difference is
clearly dependent on the specified distance m. Even though, SSIM
is suggestive of the introduced error, such metrics are inadequate
to solely evaluate the coherence of stereoscopic image pairs; since
they only take discrepancies on a single image basis into account but
do not consider the image fusion performed by the HVS. Note that,
for visualization purposes, all comparisons based on the SSIM were
performed prior to any lens corrections, like the barrel distortion
or the chromatic aberration correction. Therefore, the slight blurr
caused by the mono-to-stereo mapping has hardly impact on the
display which matches the findings of our questionnaire.

6 USER STUDY

Besides analyzing geometric error bounds and color differences, we
were interested in evaluating the qualitative influence of the mono
plane. Therefore we performed a user study to compare images
resulted of the hybrid stereoscopic rendering and the common stereo
rendering as reference mode. The study was intended to answer the
following questions: Is there a loss of quality or comfort for the
viewer? Is there a notable discrepancy between the rendering, and
how does it vary with the distance of the mono plane. To explore
these issues, we used three different scene types for visual inspection
at ten levels of the distance to the mono plane.

6.1 Study Design
The user study included 47 subjects (16 females and 31 males, mean
age 26.4) and was conducted as a within-subject study. The task was
a simple decision task, which met the demand of the two-alternative
forced choice (2AFC) technique. The two alternatives presented
were the reference image (Stereo) and the hybrid stereoscopic image
pair (Hybrid), both showed by an HTC Vive with maximum frame
rate and same lighting conditions. The users were asked to make
a forced choice between the presented images, i.e. choosing the
preferred rendering. The images presented were three test scenes
varying in their degree of realism and in the nature and arrangement
of shapes: BEAMS, LANDSCAPE and SPHERES (see Fig. 6). BEAMS
is a scene with many lines and edges. It should make visual flaws
well visible, so it can be labeled as the worst scene regarding to our
approach. SPHERES is the positive equivalent to BEAMS. There are
no lines or edges but only spherical objects. LANDSCAPE, as natural
scene, can be seen as a typical application scenario. All three scenes
provide geometry which is uniformly distributed across space, and,
thus, sufficiently meet our test range.

After an introduction session, the subjects viewed all three test
scenes for ten distance levels, respectively, in both rendering modes.
Thereby, the subject could manually switch between the modes as
often as required and viewing the modes was not limited in time.
The subjects never knew which rendering mode was presented. As
soon as the participant was ready for decision making, he or she
confirmed the preferred rendering mode and the next distance setup
was displayed automatically. Whether the scene type or the distance
or the rendering mode, all levels assigned to these independent
variables were presented in a randomized order. Besides decision
making, subjects had to fill in a self-metric questionnaire at the end
of their session. This questionnaire was used for checking variances
in qualitative matters between the options and the occurrence of any
apparent side effects besides the known introduced geometric error.

6.2 Results
Overall, 47 participants had to make 10 decisions for three scenes,
which results in 1410 decisions. Because sometimes the user did
not viewed both rendering modes before making the decision, 48
decisions were declared as invalid. Thus, the number of observations
used for statistical analysis amounted to 1362.

The results do not show any trend related to the distance m of the
mono plane. Thereby hybrid-choices range from 29 % (m = 8) to
41 % (m = 39.5). Statistical tests also did not indicate any notewor-
thy correlations between the variable distance and others. Variables
distance and decision have a weak correlation (phi = 0.07, p > 0.05)
but it is not statistically significant. These results indicate that the
detection of differences between the rendering modes was not only
based on the projection error, which quickly decreases with growing
m. One possible explanation would be that our hybrid rendering
pipeline performs worse in terms of anti-aliasing, or that the gen-
eral image quality is reduced, e.g. due to blurring. Answers to the
questionnaire, however, indicate no visible difference regarding this.
Instead, it seems that participants detected the difference between
the rendering modes by the unavoidable kink of straight lines pass-
ing the mono plane as provided by the BEAMS scene. As soon as
such anomaly has been found by a participant, it was easier to spot
the difference. This is supported by visual inspection of the results
for all three scenes over the distance levels (see Fig. 7). In general,
participants preferred the fully stereoscopic rendering, but the pref-
erence strongly varies with the scene. While for the SPHERES the
difference is moderate, for the BEAMS a strong preference for the
fully stereoscopic rendering can be observed. Two-sample t-Test
shows a difference in the means between the three scenes but the
results are not statistically significant. Besides such differences be-
tween the scenes, there is also a variation in the choices regarding
the order in which the participant saw the different scenes. Of the 47

(a) (b) (c) (d)

Figure 6: Disparity and scene views with local SSIM (visualized as (1−SSIM)×10). (a) Disparity between the reference (green) and the hybrid
rendering (red) for the right image with m = 1.6 (a very close setting). It is apparent how the beam drifts to the left with increasing distance
compared to the reference. Views of the scenes (b) BEAMS, (c) LANDSCAPE and (d) SPHERES with visualizations of their local SSIM (w = 4) using
m = 3 (upper) and m = 8 (lower).

au
Spheres Landscape Beams

Figure 7: Decision for the different scenes for all m. The black line marks the 50% threshold. SPHERES: 175 decisions for Hybrid / 277 for Stereo
(≈ 38,72%) who adjudged the Hybrid mode as the better one. LANDSCAPE: 162 decisions for Hybrid / 297 for Stereo (≈ 35,29%). BEAMS: 147
decisions for Hybrid /304 for Stereo (≈ 32,59%).

subjects in total, 15 saw the scene LANDSCAPE at first, 16 SPHERES
and 16 BEAMS. Participants whose first scene was SPHERES less of-
ten saw a difference in all scenes than participants who saw BEAMS
or LANDSCAPE at the beginning. Regarding this, the data show that
40 % of the subjects with SPHERES at first, 37 % with LANDSCAPE
and only 29 % with BEAMS at first chose our hybrid stereoscopic
technique.

In summary, it can be said that the quality or comfort for the
viewer varies with the type of scene or application and not with the
distance of the mono plane. Thus, we cannot give a recommenda-
tion for the best distance for the mono plane, and one of our main
questions must remain unanswered. As it turned out, there is no
trend recognizable, for which distance it is advisable and for which
distance it is not. Neither the decision time nor the switch-rate, have
shown any interaction between the distance of the mono plane and
the viewer’s preference. One reason for this could be that once kink
features have been discovered, the user was more triggered to detect
such anomalies, even at greater distances.

The results of the questionnaire as well as a detailed description of
the study and its results can be found in the Supplemental Material.

7 CONCLUSIONS AND FUTURE WORK

In this paper we showed that hybrid stereo rendering can result in
significant performance gains. However, such performance gains
require a reasonably grained subdivision of the scene, so that culling
techniques perform well. Furthermore, there are always situations
possible, where most of the geometry is in the near range, and thus
has to be rendered twice, so the gain is not constant in all situations.

We did not examine transparent objects in our implementation,
which would require more complicated merging of the images. Fur-
thermore, we do not handle moving objects, which would require
modifications to the culling stages and to temporal anti-aliasing.

The merging of the monoscopic view results in a linear filtering
of the far region, which is unavoidable unless we could guarantee

that the left and right frusta are symmetric. The result is that the
far region is slightly blurred, but due to the following temporal
anti-aliasing and the lens corrections this effect is hardly noticable.
However, the effect should be taken into consideration for a future
user study, and it should be checked if it does not negatively impact
the perceived quality.

Finally, our user study gave us no hints what the best choice for
the mono plane distance is. We can only give the advice to adjust
m visually. It would be good to develop an approach to choose m
adaptively, depending on currently seen objects.

The user study showed us that the applicability of our approach
heavily depends on scene characteristics. However, we did not
evaluate how big the impact is, and whether the approach is not
usable for certain scenes or maybe tasks. We have the hypothesis
that the inevitable kink in straight lines that pass the mono plane is
noticeable, but we did not evaluate how big the impact of this effect
on perceived quality is. We made the experience that the effect is
particularly visible if a virtual laser beam is attached to a controller.
It is possible that the approach has a negative impact on performing
tasks in VR, that require interactions with objects beyond the mono
plane, which should also be examined in future studies.

REFERENCES

[1] W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen. Effi-
cient depth image based rendering with edge dependent depth filter and
interpolation. In 2005 IEEE International Conference on Multimedia
and Expo, pp. 1314–1317. IEEE, 2005.

[2] J. E. Cutting and P. M. Vishton. Perceiving layout and knowing dis-
tances: The interaction, relative potency, and contextual use of different
information about depth., pp. 69–117. Perception of space and motion,
1995.

[3] R. V. Daniele Di Donato, Remi Palandri. High quality mobile vr with
unreal engine and oculus. GDC 2017, 2017.

[4] P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel.
A perceptual model for disparity. In ACM Transactions on Graphics
(TOG), vol. 30, p. 96. ACM, 2011.

[5] DrashVR. Titans of space. http://titansofspacevr.com/

tosclassic.php.
[6] T. Elbaum, M. Wagner, and A. Botzer. Cyclopean vs. dominant eye

in gaze-interface-tracking. Journal of Eye Movement Research, 10(1),
2017.

[7] I. Epic Games. Monoscopic far field rendering. Unreal Engine (v4.16)
Documentation. https://docs.unrealengine.com/en-us/

Platforms/VR/MonoFarFieldRendering.
[8] I. Epic Games. Vr performance features. Unreal Engine (v4.17)

Documentation. https://docs.unrealengine.com/en-us/

Platforms/VR/VRPerformance.
[9] I. Epic Games. Release notes 4.15. Unreal Engine Docu-

mentation, February 2017. https://docs.unrealengine.com/
en-US/Support/Builds/ReleaseNotes/4 15.

[10] C. Fehn. A 3d-tv approach using depth-image-based rendering (dibr).
In Proc. of VIIP, vol. 3, 2003.

[11] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pp. 231–238. ACM, 1993.

[12] K. Group. glmultidrawelementsindirect, 2014.
https://www.khronos.org/registry/OpenGL-Refpages/

gl4/html/glMultiDrawElementsIndirect.xhtml.
[13] T. Heath. Ort (near stereo, far mono). OculusSDK Samples, December

18 2014.
[14] N. Hull and N. Benty. Nvidia emerald square, open research con-

tent archive (orca), July 2017. http://developer.nvidia.com/
orca/nvidia-emerald-square.

[15] B. Karis. High-quality temporal supersampling. Advances in Real-Time
Rendering in Games, SIGGRAPH Courses, 1:1–55, 2014.

[16] D. Kirkland, B. Armstrong, M. Gold, J. Leech, and P. Womack. Mul-
tisampling, March 2002. https://www.khronos.org/registry/
OpenGL/extensions/ARB/ARB multisample.txt.

[17] M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross.
Nonlinear disparity mapping for stereoscopic 3d. In ACM Transactions
on Graphics (TOG), vol. 29, p. 75. ACM, 2010.

[18] J. Ludwig. Ivrsystem::getrecommendedrendertargetsize. OpenVR
Wiki, April 2015. https://github.com/ValveSoftware/openvr/
wiki/ IVRSystem::GetRecommendedRenderTargetSize.

[19] A. P. Mapp, H. Ono, and R. Barbeito. What does the dominant eye
dominate? a brief and somewhat contentious review. Perception &
Psychophysics, 65(2):310–317, 2003.

[20] B. C. McCann, M. M. Hayhoe, and W. S. Geisler. Contributions of
monocular and binocular cues to distance discrimination in natural
scenes. Journal of vision, 18(4):12–12, 2018.

[21] NVidia. Single pass stereo. NVidia Developer Documentation.
https://developer.nvidia.com/vrworks/graphics/single

passstereo.
[22] S. G. Remi Palandri. Hybrid mono rendering in ue4 and

unity. Oculus Blog, 2016. https://developer.oculus.com/
blog/hybrid-mono-rendering-in-ue4-and-unity/.

[23] A. Schollmeyer, S. Schneegans, S. Beck, A. Steed, and B. Froehlich.
Efficient hybrid image warping for high frame-rate stereoscopic ren-
dering. IEEE Transactions on Visualization and Computer Graphics,
23(4):1332–1341, April 2017. doi: 10.1109/TVCG.2017.2657078

[24] R. Srinivasiah. How to maximize ar and vr performance with
advanced stereo rendering. Unity Blog, November 21 2017.
https://blogs.unity3d.com/2017/11/21/how-to-maximize-

ar-and-vr-performance-with-advanced-stereo-rendering/.
[25] R. Srinivasiah. Ivrsystem::getprojectionraw. OpenVR Wiki, April

2017. https://github.com/ValveSoftware/openvr/wiki/

IVRSystem::GetProjectionRaw.
[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image

quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

[27] M. Weier, T. Roth, E. Kruijff, A. Hinkenjann, A. Pérard-Gayot,
P. Slusallek, and Y. Li. Foveated real-time ray tracing for head-mounted
displays. In Computer Graphics Forum, vol. 35, pp. 289–298. Wiley

Online Library, 2016.
[28] M. Weier, M. Stengel, T. Roth, P. Didyk, E. Eisemann, M. Eisemann,

S. Grogorick, A. Hinkenjann, E. Kruijff, M. Magnor, et al. Perception-
driven accelerated rendering. In Computer Graphics Forum, vol. 36,
pp. 611–643. Wiley Online Library, 2017.

	Introduction
	Related Work
	Hybrid Mono-Stereo Rendering
	Implementation Details
	View and Projection Matrices
	Mono-to-Stereo Mapping
	Transition Artifacts
	Culling
	Anti-Aliasing

	Results
	Performance
	Quality

	User Study
	Study Design
	Results

	Conclusions and Future Work

