LGDV

Time-Warped Foveated Rendering for Virtual Reality Headsets

<u>Linus Franke</u>¹, Laura Fink¹, Jana Martschinke¹, Kai Selgrad², Marc Stamminger¹

¹ Chair of Visual Computing, University of Erlangen-Nuremberg, Germany

² OTH Regensburg, Germany

Motivation

ILGDV

Virtual Reality allows:

- Immersive experience
- Exploration of virtual worlds

VR Headsets have become consumer products

Source: No Man's Sky, Hello Games

Rendering for VR is expensive

- High framerate requirements (>70 Hz)
- Over the last years, HMD resolutions increased drastically
- A solution is to exploit weaknesses in the human visual system

Selected HMD Resolutions Per Eye

Cones: High spatial resolution

Rods: High temporal resolution, less spatial resolution

For us, this differentiates the Visual System into two parts:

- Foveal region (or Fovea), from 0° to $\sim 7^{\circ}$ eccentricity
- Peripheral region

Graphs adapted from Weier et al. 17 and Goldstein 16

Foveated Rendering

LGDV

Sensory non-uniformity can be exploited for faster rendering <u>Requirement</u>: Knowledge of the user's gaze, usually via real-time **Eye-Tracking**

Foveated Rendering: Related Work

Source: Guenter et al. 2012

Different resolutions approach:

- Full resolution in the fovea
- Progressively lower resolutions for peripheral regions

Strong Anti-aliasing necessary

May 3, 2021

Foveated Rendering: Related Work

Towards Foveated Rendering for Gaze-Tracked Virtual RealityAnjul Patney*Marco SalviJoohwan Kim
David LuebleAnton Kaplanyan
Aaron LefohnChris WymanNir BentyNVIDIAOfficient Colspan="4">Officient Colspan="4"Officient Colspan="4"Offi

Source: Patney et al. 2016

Different shading rates approach:

- Shading resolution in the fovea is highest
- Progressively lower rates towards the periphery

No acceleration beyond shading cost

Source: Swaroop Bhonde, Nvidia 2019

Foveated Rendering: Related Work

Foveated Real-Time Ray Tracing for Head-Mounted Displays

Martin Weier^{1,2}, Thorsten Roth^{1,5}, Ernst Kruijff¹, André Hinkenjann¹, Arsène Pérard-Gayot^{2,3}, Philipp Slusallek^{2,3,4}, Yongmin Li⁵

¹Bonn-Rhein-Sieg University of Applied Sciences, ²Saarland University, ³Intel Visual Computing Institute, ⁴German Research Center for Artificial Intelligence (DFKI), ⁵Brunel University London

Warped ray-tracing approach:

- Full Samples in the fovea
- Sparsely sample the periphery
- Reuse previous frames for hole-filling and resample

Image

- Reuse as much samples as possible

- Redraw only what is necessary
- Evaluating cleverly necessary

Reproject Last Frame

Reproject Last Frame

Forward warping

Forward warping, using world position buffer

•	

•	

Forward warping, using world position buffer

Evaluate result

Evaluate result

Evaluate result

Reprojection

Hole-fill Mipmap

Hole-filled image

Reprojection only

Hole-filled image

Reprojection only

Hole-filled image

Hole-filled image

Redraw Map

Redraw Map

Redraw Map

Hierarchical culling of objects

Hole-filled

(Almost) Final Image Used for next frames as input Redraw is improved by anti-aliasing

Reprojection can use motion smoothing

Reuse "inaccurate" depth based reprojection in TAA pipeline

- Formalize redraw decision
- Base on perceptual and reprojection characteristics

Confidence Function

Three main factors:

Three main factors:

- Size of holes

60°

 80°

Three main factors:

- Size of holes
- Eccentricity
- Contrast

Three main factors:

- Size of holes
- Eccentricity
- Contrast

Confidence map (after a few frames)

Confidence map (after a few frames)

Confidence map (after a few frames)

Confidence map (after a few frames)

Redraw decision based on cut-off value ϵ

Calibration user study (21 participants) identified $\epsilon = 0.2$

Rendered freshly

Composed Image

Evaluation – Validation User Study

Compare regular to time-warped foveated rendering

- 22 Participents
- No significant preference for any mode

Evaluation - Performance

Performance

Evaluation - Performance

Evaluation - Performance

- No support for moving lights
- No acceleration for transparency
- Difficulties with view-dependent post-processing (e.g. reflections)

Recap

Recap

Recap

next frame

Questions?

Email: linus.franke@fau.de

Twitter: @_linus_franke

Additional Slides

Dynamic Objects

LGDV

Errors if dynamic confidence falloff is too low:

