• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Chair of Visual Computing
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik

Chair of Visual Computing

Navigation Navigation close
  • Research
    • Rendering and Visualization
    • Geometric Modeling and 3D Reconstruction
    • Virtual, Mixed, and Augmented Reality
    • Visual Computing for Digital Humanities and Social Sciences
    • Visual Healthcare Computing
    Research
  • Publications
  • Teaching
    • Vertiefungsrichtung Visual Computing
    • Summer Term 2025
    • Winter Term 2024/25
    • Theses
    Teaching
  • Staff
  • Arrival and Contact
  1. Home
  2. Publications
  3. Publications 2021
  4. Efficient Unbiased Volume Path Tracing on the GPU

Efficient Unbiased Volume Path Tracing on the GPU

In page navigation: Publications
  • Publications 2020
  • Publications 2021
    • ADOP: Approximate Differentiable One-Pixel Point Rendering
    • Efficient Unbiased Volume Path Tracing on the GPU
    • Interactive Path Tracing and Reconstruction of Sparse Volumes
    • Projection Mapping for In-Situ Surgery Planning by the Example of DIEP Flap Breast Reconstruction
    • Robust marker-based projector-camera synchronization
    • Scan&Paint: Image-based Projection Painting
    • Spatio-temporal filtered motion DAGs for path-tracing
  • Publications 2022

Efficient Unbiased Volume Path Tracing on the GPU

Nikolai Hofmann

Nikolai Hofmann, M. Sc.

Department of Computer Science
Chair of Computer Science 9 (Computer Graphics)

Room: Room 01.118-128
Cauerstraße 11
91058 Erlangen
  • Phone number: +49 9131 85-25257
  • Email: nikolai.hofmann@fau.de
  • Website: http://lgdv.cs.fau.de/
  • Hofmann N., Evans A.:
    Efficient Unbiased Volume Path Tracing on the GPU
    In: Ray Tracing Gems II, 2021
    ISBN: 978-1-4842-7184-1

    DOI: 10.1007/978-1-4842-7185-8_43
    BibTeX: Download

We present a set of optimizations that improve the performance of high-quality volumetric path tracing. We build upon unbiased volume sampling techniques, i.e., null-collision trackers, with voxel data stored in an OpenVDB tree. The presented optimizations achieve an overall 2x to 3x speedup when implemented on a modern GPU, with an approximately 6.5x reduction in memory footprint. The improvements primarily stem from a multi-level digital differential analyzer (DDA) to step through a grid of precomputed bounds; a replacement of the top levels of the OpenVDB tree with a dense indirection texture, similar to virtual textures, while preserving some sparsity; and quantization of the voxel data, encoded using GPU-supported block compression. Finally, we examine the isolated effect of our optimizations, covering stochastic filtering, the use of dense indirection textures, compressed voxel data, and singleversus multi-level DDAs.

Read the chapter

 

Chair of Visual Computing
(Lehrstuhl für Graphische Datenverarbeitung)

Cauerstraße 11
91058 Erlangen
Deutschland
  • Imprint
  • Privacy
  • Facebook
  • RSS Feed
  • Xing
Up