• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Chair of Visual Computing
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik

Chair of Visual Computing

Navigation Navigation close
  • Research
    • Rendering and Visualization
    • Geometric Modeling and 3D Reconstruction
    • Virtual, Mixed, and Augmented Reality
    • Visual Computing for Digital Humanities and Social Sciences
    • Visual Healthcare Computing
    Research
  • Publications
  • Teaching
    • Vertiefungsrichtung Visual Computing
    • Summer Term 2025
    • Winter Term 2024/25
    • Theses
    Teaching
  • Staff
  • Arrival and Contact
  1. Home
  2. Publications
  3. Reality Forge: Interactive Dynamic Multi-Projection Mapping

Reality Forge: Interactive Dynamic Multi-Projection Mapping

In page navigation: Publications
  • Adaptive stray-light compensation in dynamic multi-projection mapping
  • Adaptive Temporal Sampling for Volumetric Path Tracing of Medical Data
  • Analytic Displacement Mapping using Hardware Tessellation
  • Anisotropic Surface Based Deformation
  • Auto-Calibration for Dynamic Multi-Projection Mapping on Arbitrary Surfaces
  • Automated Heart Localization in Cardiac Cine MR Data
  • Demo of Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • Enhanced Sphere Tracing
  • Evaluating the Usability of Recent Consumer-Grade 3D Input Devices
  • Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • FaceForge: Markerless Non-Rigid Face Multi-Projection Mapping
  • FaceInCar: Real-time Dense Monocular Face Tracking of a Driver
  • FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality
  • GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules
  • Grundsätzliche Überlegungen zur Edition des Bestandes an Münzen der FAU als frei zugängliche Datenbank im WWW
  • HeadOn: Real-time Reenactment of Human Portrait Videos
  • Hierarchical Multi-Layer Screen-Space Ray Tracing
  • Hybrid Mono-Stereo Rendering in Virtual Reality
  • Interactive Model-based Reconstruction of the Human Head using an RGB-D Sensor
  • Interactive Painting and Lighting in Dynamic Multi-Projection Mapping
  • Learning Real-Time Ambient Occlusion from Distance Representations
  • Low-Cost Real-Time 3D Reconstruction of Large-Scale Excavation Sites using an RGB-D Camera
  • Multi-Layer Depth of Field Rendering with Tiled Splatting
  • Multi-Resolution Attributes for Hardware Tessellated Objects
  • Real-time 3D Reconstruction at Scale using Voxel Hashing
  • Real-time Collision Detection for Dynamic Hardware Tessellated Objects
  • Real-time Expression Transfer for Facial Reenactment
  • Real-time Local Displacement using Dynamic GPU Memory Management
  • Real-Time Pixel Luminance Optimization for Dynamic Multi-Projection Mapping
  • Reality Forge: Interactive Dynamic Multi-Projection Mapping
  • Robust Blending and Occlusion Compensation in Dynamic Multi-Projection Mapping
  • Shape Adaptive Cut Lines
  • Spherical Fibonacci Mapping
  • State of the Art Report on Real-time Rendering with Hardware Tessellation
  • Stray-Light Compensation in Dynamic Projection Mapping
  • Visualization and Deformation Techniques for Entertainment and Training in Cultural Heritage
  • VolumeDeform: Real-time Volumetric Non-rigid Reconstruction

Reality Forge: Interactive Dynamic Multi-Projection Mapping

  • Siegl C., Colaianni M., Lange V., Stamminger M., Bauer F.:
    Reality Forge: Interactive Dynamic Multi-Projection Mapping
    Siggraph Asia 2016 (Macao)
    In: ACM SIGGRAPH 2016 Emerging Technologies, New York, NY, USA: 2016
    DOI: 10.1145/2988240.2988254
    BibTeX: Download

Downloads

Dowloads: Es konnten keine Dateien gefunden werden.

Creating digitals assets, especially surface textures is a tedious, and often unintuitive task. We built a fun to use, interactive projection-mapping system that aims to simplify this process. This demonstration is based on our fully dynamic multi-projection mapping system. It enables us to bring virtual worlds into shared physical spaces, as it allows for smooth blending across multiple projectors using a new optimization framework that simulates the diffuse direct light transport of the physical world to continuously adapt the color output of each projector pixel. This real-time solution uses off-the-shelf graphics hardware, depth cameras and projectors. Based on this system we present a non-destructive, immersive, fully dynamic mixed-reality painting system for real-world objects that combines the workflow of a traditional airbrush artist with the power of digital media. In contrast to a real-world airbrush artist, we are not limited to pigmented paint but can apply elaborate material and lighting effects. Since our system interactively changes the appearance of any Lambertian real-world object, designing the surface texture of a 3D-Object becomes a collaborative experience. We leverage this new tool in the context of cultural heritage and design helping teachers, researchers and designers to experiment with different materials, surroundings and painting techniques in the real-world.

Display external content

At this point content of an external provider (source: Vimeo) is integrated. When displaying, data may be transferred to third parties or cookies may be stored, therefore your consent is required.

You can find more information and the possibility to revoke your consent in our privacy policy.

I agree

Chair of Visual Computing
(Lehrstuhl für Graphische Datenverarbeitung)

Cauerstraße 11
91058 Erlangen
Deutschland
  • Imprint
  • Privacy
  • Facebook
  • RSS Feed
  • Xing
Up