• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Chair of Visual Computing
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik

Chair of Visual Computing

Navigation Navigation close
  • Research
    • Rendering and Visualization
    • Geometric Modeling and 3D Reconstruction
    • Virtual, Mixed, and Augmented Reality
    • Visual Computing for Digital Humanities and Social Sciences
    • Visual Healthcare Computing
    Research
  • Publications
  • Teaching
    • Vertiefungsrichtung Visual Computing
    • Summer Term 2025
    • Winter Term 2024/25
    • Theses
    Teaching
  • Staff
  • Arrival and Contact
  1. Home
  2. Publications
  3. Interactive Model-based Reconstruction of the Human Head using an RGB-D Sensor

Interactive Model-based Reconstruction of the Human Head using an RGB-D Sensor

In page navigation: Publications
  • Adaptive stray-light compensation in dynamic multi-projection mapping
  • Adaptive Temporal Sampling for Volumetric Path Tracing of Medical Data
  • Analytic Displacement Mapping using Hardware Tessellation
  • Anisotropic Surface Based Deformation
  • Auto-Calibration for Dynamic Multi-Projection Mapping on Arbitrary Surfaces
  • Automated Heart Localization in Cardiac Cine MR Data
  • Demo of Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • Enhanced Sphere Tracing
  • Evaluating the Usability of Recent Consumer-Grade 3D Input Devices
  • Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • FaceForge: Markerless Non-Rigid Face Multi-Projection Mapping
  • FaceInCar: Real-time Dense Monocular Face Tracking of a Driver
  • FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality
  • GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules
  • Grundsätzliche Überlegungen zur Edition des Bestandes an Münzen der FAU als frei zugängliche Datenbank im WWW
  • HeadOn: Real-time Reenactment of Human Portrait Videos
  • Hierarchical Multi-Layer Screen-Space Ray Tracing
  • Hybrid Mono-Stereo Rendering in Virtual Reality
  • Interactive Model-based Reconstruction of the Human Head using an RGB-D Sensor
  • Interactive Painting and Lighting in Dynamic Multi-Projection Mapping
  • Learning Real-Time Ambient Occlusion from Distance Representations
  • Low-Cost Real-Time 3D Reconstruction of Large-Scale Excavation Sites using an RGB-D Camera
  • Multi-Layer Depth of Field Rendering with Tiled Splatting
  • Multi-Resolution Attributes for Hardware Tessellated Objects
  • Real-time 3D Reconstruction at Scale using Voxel Hashing
  • Real-time Collision Detection for Dynamic Hardware Tessellated Objects
  • Real-time Expression Transfer for Facial Reenactment
  • Real-time Local Displacement using Dynamic GPU Memory Management
  • Real-Time Pixel Luminance Optimization for Dynamic Multi-Projection Mapping
  • Reality Forge: Interactive Dynamic Multi-Projection Mapping
  • Robust Blending and Occlusion Compensation in Dynamic Multi-Projection Mapping
  • Shape Adaptive Cut Lines
  • Spherical Fibonacci Mapping
  • State of the Art Report on Real-time Rendering with Hardware Tessellation
  • Stray-Light Compensation in Dynamic Projection Mapping
  • Visualization and Deformation Techniques for Entertainment and Training in Cultural Heritage
  • VolumeDeform: Real-time Volumetric Non-rigid Reconstruction

Interactive Model-based Reconstruction of the Human Head using an RGB-D Sensor

Dr.-Ing. Justus Thies

  • Email: justus.thies@tum.de
  • Website: http://niessnerlab.org/members/justus_thies/profile.html
Short description: Justus Thies ist inzwischen PostDoc an der TUM.

We present a novel method for the interactive markerless reconstruction of human heads using a single commodity RGB-D sensor. Our entire reconstruction pipeline is implemented on the GPU and allows to obtain high-quality reconstructions of the human head using an interactive and intuitive reconstruction paradigm. The core of our method is a fast GPU-based non-linear Quasi-Newton solver that allows us to leverage all information of the RGB-D stream and fit a statistical head model to the observations at interactive frame rates. By jointly solving for shape, albedo and illumination parameters, we are able to reconstruct high-quality models including illumination corrected textures. All obtained reconstructions have a common topology and can be directly used as assets for games, films and various virtual reality applications. We show motion retargeting, retexturing and relighting examples. The accuracy of the presented algorithm is evaluated by a comparison against ground truth data.

VIDEO

 

Chair of Visual Computing
(Lehrstuhl für Graphische Datenverarbeitung)

Cauerstraße 11
91058 Erlangen
Deutschland
  • Imprint
  • Privacy
  • Facebook
  • RSS Feed
  • Xing
Up