• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Chair of Visual Computing
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik

Chair of Visual Computing

Navigation Navigation close
  • Research
    • Rendering and Visualization
    • Geometric Modeling and 3D Reconstruction
    • Virtual, Mixed, and Augmented Reality
    • Visual Computing for Digital Humanities and Social Sciences
    • Visual Healthcare Computing
    Research
  • Publications
  • Teaching
    • Vertiefungsrichtung Visual Computing
    • Summer Term 2025
    • Winter Term 2024/25
    • Theses
    Teaching
  • Staff
  • Arrival and Contact
  1. Home
  2. Publications
  3. Real-time 3D Reconstruction at Scale using Voxel Hashing

Real-time 3D Reconstruction at Scale using Voxel Hashing

In page navigation: Publications
  • Adaptive stray-light compensation in dynamic multi-projection mapping
  • Adaptive Temporal Sampling for Volumetric Path Tracing of Medical Data
  • Analytic Displacement Mapping using Hardware Tessellation
  • Anisotropic Surface Based Deformation
  • Auto-Calibration for Dynamic Multi-Projection Mapping on Arbitrary Surfaces
  • Automated Heart Localization in Cardiac Cine MR Data
  • Demo of Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • Enhanced Sphere Tracing
  • Evaluating the Usability of Recent Consumer-Grade 3D Input Devices
  • Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • FaceForge: Markerless Non-Rigid Face Multi-Projection Mapping
  • FaceInCar: Real-time Dense Monocular Face Tracking of a Driver
  • FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality
  • GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules
  • Grundsätzliche Überlegungen zur Edition des Bestandes an Münzen der FAU als frei zugängliche Datenbank im WWW
  • HeadOn: Real-time Reenactment of Human Portrait Videos
  • Hierarchical Multi-Layer Screen-Space Ray Tracing
  • Hybrid Mono-Stereo Rendering in Virtual Reality
  • Interactive Model-based Reconstruction of the Human Head using an RGB-D Sensor
  • Interactive Painting and Lighting in Dynamic Multi-Projection Mapping
  • Learning Real-Time Ambient Occlusion from Distance Representations
  • Low-Cost Real-Time 3D Reconstruction of Large-Scale Excavation Sites using an RGB-D Camera
  • Multi-Layer Depth of Field Rendering with Tiled Splatting
  • Multi-Resolution Attributes for Hardware Tessellated Objects
  • Real-time 3D Reconstruction at Scale using Voxel Hashing
  • Real-time Collision Detection for Dynamic Hardware Tessellated Objects
  • Real-time Expression Transfer for Facial Reenactment
  • Real-time Local Displacement using Dynamic GPU Memory Management
  • Real-Time Pixel Luminance Optimization for Dynamic Multi-Projection Mapping
  • Reality Forge: Interactive Dynamic Multi-Projection Mapping
  • Robust Blending and Occlusion Compensation in Dynamic Multi-Projection Mapping
  • Shape Adaptive Cut Lines
  • Spherical Fibonacci Mapping
  • State of the Art Report on Real-time Rendering with Hardware Tessellation
  • Stray-Light Compensation in Dynamic Projection Mapping
  • Visualization and Deformation Techniques for Entertainment and Training in Cultural Heritage
  • VolumeDeform: Real-time Volumetric Non-rigid Reconstruction

Real-time 3D Reconstruction at Scale using Voxel Hashing

Online 3D reconstruction is gaining newfound interest due to the availability of real-time consumer depth cameras. The basic problem takes live overlapping depth maps as input and incrementally fuses these into a single 3D model. This is challenging particularly when real-time performance is desired without trading quality or scale. We contribute an online system for large and fine scale volumetric reconstruction based on a memory and speed efficient data structure. Our system uses a simple spatial hashing scheme that compresses space, and allows for real-time access and updates of implicit surface data, without the need for a regular or hierarchical grid data structure. Surface data is only stored densely where measurements are observed. Additionally, data can be streamed efficiently in or out of the hash table, allowing for further scalability during sensor motion. We show interactive reconstructions of a variety of scenes, reconstructing both fine-grained details and large scale environments. We illustrate how all parts of our pipeline from depth map pre-processing, camera pose estimation, depth map fusion, and surface rendering are performed at real-time rates on commodity graphics hardware. We conclude with a comparison to current state-of-the-art online systems, illustrating improved performance and reconstruction quality.

Display external content

At this point content of an external provider (source: YouTube) is integrated. When displaying, data may be transferred to third parties or cookies may be stored, therefore your consent is required.

You can find more information and the possibility to revoke your consent in our privacy policy.

I agree

Chair of Visual Computing
(Lehrstuhl für Graphische Datenverarbeitung)

Cauerstraße 11
91058 Erlangen
Deutschland
  • Imprint
  • Privacy
  • Facebook
  • RSS Feed
  • Xing
Up