• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Chair of Visual Computing
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik

Chair of Visual Computing

Navigation Navigation close
  • Research
    • Rendering and Visualization
    • Geometric Modeling and 3D Reconstruction
    • Virtual, Mixed, and Augmented Reality
    • Visual Computing for Digital Humanities and Social Sciences
    • Visual Healthcare Computing
    Research
  • Publications
  • Teaching
    • Vertiefungsrichtung Visual Computing
    • Summer Term 2025
    • Winter Term 2024/25
    • Theses
    Teaching
  • Staff
  • Arrival and Contact
  1. Home
  2. Publications
  3. GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

In page navigation: Publications
  • Adaptive stray-light compensation in dynamic multi-projection mapping
  • Adaptive Temporal Sampling for Volumetric Path Tracing of Medical Data
  • Analytic Displacement Mapping using Hardware Tessellation
  • Anisotropic Surface Based Deformation
  • Auto-Calibration for Dynamic Multi-Projection Mapping on Arbitrary Surfaces
  • Automated Heart Localization in Cardiac Cine MR Data
  • Demo of Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • Enhanced Sphere Tracing
  • Evaluating the Usability of Recent Consumer-Grade 3D Input Devices
  • Face2Face: Real-time Face Capture and Reenactment of RGB Videos
  • FaceForge: Markerless Non-Rigid Face Multi-Projection Mapping
  • FaceInCar: Real-time Dense Monocular Face Tracking of a Driver
  • FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality
  • GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules
  • Grundsätzliche Überlegungen zur Edition des Bestandes an Münzen der FAU als frei zugängliche Datenbank im WWW
  • HeadOn: Real-time Reenactment of Human Portrait Videos
  • Hierarchical Multi-Layer Screen-Space Ray Tracing
  • Hybrid Mono-Stereo Rendering in Virtual Reality
  • Interactive Model-based Reconstruction of the Human Head using an RGB-D Sensor
  • Interactive Painting and Lighting in Dynamic Multi-Projection Mapping
  • Learning Real-Time Ambient Occlusion from Distance Representations
  • Low-Cost Real-Time 3D Reconstruction of Large-Scale Excavation Sites using an RGB-D Camera
  • Multi-Layer Depth of Field Rendering with Tiled Splatting
  • Multi-Resolution Attributes for Hardware Tessellated Objects
  • Real-time 3D Reconstruction at Scale using Voxel Hashing
  • Real-time Collision Detection for Dynamic Hardware Tessellated Objects
  • Real-time Expression Transfer for Facial Reenactment
  • Real-time Local Displacement using Dynamic GPU Memory Management
  • Real-Time Pixel Luminance Optimization for Dynamic Multi-Projection Mapping
  • Reality Forge: Interactive Dynamic Multi-Projection Mapping
  • Robust Blending and Occlusion Compensation in Dynamic Multi-Projection Mapping
  • Shape Adaptive Cut Lines
  • Spherical Fibonacci Mapping
  • State of the Art Report on Real-time Rendering with Hardware Tessellation
  • Stray-Light Compensation in Dynamic Projection Mapping
  • Visualization and Deformation Techniques for Entertainment and Training in Cultural Heritage
  • VolumeDeform: Real-time Volumetric Non-rigid Reconstruction

GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

  • Bertelshofer F., Sun L., Greiner G., Böckmann R.:
    GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules.
    In: Frontiers in Bioengineering and Biotechnology 3 (2015), p. 186
    ISSN: 2296-4185
    DOI: 10.3389/fbioe.2015.00186
    URL: http://journal.frontiersin.org/article/10.3389/fbioe.2015.00186/abstract
    BibTeX: Download

Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and, in particular, also their interactions with each other. Additionally, knowledge about solution electrostatics may also guide the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson-Boltzmann equation (PBE). Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss-Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and, thus, needs to be carefully considered, e.g., in design studies on membrane proteins.

Chair of Visual Computing
(Lehrstuhl für Graphische Datenverarbeitung)

Cauerstraße 11
91058 Erlangen
Deutschland
  • Imprint
  • Privacy
  • Facebook
  • RSS Feed
  • Xing
Up